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Abstract-The present work deals with the problem of steady-state heat transfer in slug flow in a circular 
pipe with constant physical properties and negligible axial heat conduction. Use both of the Laplace 
transform with respect to the axial co-ordinate and of Gaierkin’s technique in the transform domain 
results in an approximate analytical solution. The calculations have shown that the second approximation 

thus obtained agrees well with the known exact analytical solution in the form of a series. 

NOMENCLATURE 

Bi, Biot number, same definition as in [ 11; 
J 
;;, 

first kind Bessel function of order n; 
Peclet number (heat-transfer case), same 
definition as in [l]; 

7-Y local temperature in slug flow; 

T,, ambient temperature; 
T 03 initial temperature of slug flow; 
& Laplace transform parameter; 
8, (T-T,)/(To-T,); 
PY radial coordinate divided by tube radius; 

5, axial coordinate divided by tube radius. 

Subscript 

m, mixed-mean value. 

INTRODUCTION 

RECENTLY, in connection with a problem of steady 
state heat transfer, with mixed type thermal boundary 
condition; constant physical properties; negligible axial 
heat conduction and uniform initial temperature, in 
slug flow in a pipe of circular cross-section, Golos [l] 
has considered the system of nondimensional 
equations : 

a28 1 de ae -+---peay=o aP2 pap 

@(P,O) = 1; HP, 0) = 0 (2) 

and has given an approximate solution, based on 
restricted variation principle. 

The exact solution of this system of equations can 
be found in [2,3] and is given by, as cited in [I], 

m JOG P) 

e = 2Bi “Fl (Si2 + [,2)J&) (4) 

where [, are the roots of the transcendental equation 

LJ,(L)-~iJo(L) = 0. (5) 

The definitions of the foregoing symbols and cylindrical 
polar coordinates with origin at centre of thermal entry 
section are the same as in [I]. 

However, the above-mentioned approximate solu- 
tion, given by Golos [ 11, involves a function of 5 which 
is not determinable analytically. In the present study 
we give an approximate closed-form solution, which is 
analyti~lly fullydete~ined in terms of both p and < 
and is superior to that of Golos. Also, the present 
numerical computations for exact solution would be 
superior to the earlier one [ 11. 

PRESENT ANALYSIS 

Using Laplace transform of fl with respect to axial 
co-ordinate, i.e. 

Q= m 
s 

@exp(-s0d5 (6) 
0 

equations (l)-(3) reduce to 

d2Z) 1 do 
(7) 

(8) 

We apply Galerkin technique [4] to the system of 
equations (7) and (8) and calculate only first and second 
Galerkin approximations, I?&,, and gt2,, for 8. Let the 
inverse Laplace transforms of I!$,, and o(2) be denoted 

by 4i, and efzjr respectively. Then f?(i, and &, would 
be the first and second Galerkin approximations for 8. 

The calculation of 8,,, and that of e,,, are very simple, 
if one succeeds in searching for an infinite family of 
functions of p satisfying the requirements that the 
functions satisfy (8), possess first two continuous 
derivatives and constitute a linearly independent set of 
functions on 0 d p < 1. We introduce the family of 
functions 

a>” = 1 
Bi 

--p2: 
Zn+Bi 

(n=1,2,3 )... ), (9) 
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satisfying these necessary requirements. It is note- 
worthy that these functions are algebraic polynomials. 
Therefore, the set of functions @,, given by (91 is 
complete in terms of Weierstrass theorem. 

From the family of functions in (9), only Qti is 
employed to calculate ?&,, and @i and @‘z are 
employed to calculate D(,,. Therefore, the expression 
of t+i, involves Q, and that of ~9~~) involves (I+ and a2. 

Without showing mathematical steps, we present 
our final results for $(i, and QC2i as follows: 

Al = -6Bi(Bi+4)/(Bi2+6Bi+12) 

’ 8(Bi-t2){20(&+ 12)-s,(Bi+ 14)) 
xc 

n=l 2A2s,+Aj 

AZ = 3Bi2+48Bi+256; 

A3 = 128(Bi2 + 14&f 30) ! 

where si and s2 are the roots of the quadratic equation 

AzsZ+A3s+640Bi(Bi+12)= 0. (12) 

Since the exact analytical expressions of sr and s2 can 
be given ~mm~iately, the closed-form results (10) and 
(1 I) are analytically fully-determined. 

If the present method is convergent, then the second 
order approximation, &,, should be superior to the 
first order one, @,,,. This will be examined in the 
following section. 

DISCUSSIONS 

Taking numerical values of first six 1, from [2] and 
using first six terms of (4), Golos has compared his 
approximate solution with exact solution. The com- 
parison has been made for the problem of tem~rat~e 
distribution in liquid sodium flow with Peclet number 
Pe = 22600, Biot number Bi = 05 and l, = 4972, 
where r, denotes the axial location at which thermal 
boundary layers meet. For this problem, we compare 
@,,, with exact solution (4) and with the approximate 
solution obtained in [I J. 

We calculated more than six roots of (5) to observe 
numerical convergence of (4) and found that it was 
accurate enough to perfotm computations on the basis 
of first ten terms of (4) for a range of Bi including 
Bi = 05. The computed results are assembled in Table 
1, where @(iot represents exact solution based on the 

Table 1. Comparison of various temperature 
solutions for a case of liquid sodium 

voo 
035 
070 
080 
0.90 
IGO 

0.00 
V15 
0.30 
040 
0.50 
V60 
070 
V80 
0.90 
1.00 

o-15 
0.30 
040 
0.50 
0.60 
0.70 
0.80 
V90 
1.00 

000 
V15 
030 
040 
V50 
060 
070 
V80 
V90 
1.00 

iyr, = 0.17 

a9990 0.9993 
V9986 0.9987 
09772 0.9761 
V9583 0.9579 
09291 0.9308 
0.8905 0.8926 

t/5, = 065 

V9651 0.9674 
0.9616 0.9635 
09510 0.9518 
0.9396 o-9396 
0.9243 0.9237 
09049 0.9040 
V8811 V8804 
0.8528 0.8526 
0*8201 0.8204 
0.7830 0.7836 

5/k = 1.00 

V9121 0.9129 
VP080 09086 
V8956 V8959 
08826 V8827 
0.8659 0.8658 
08454 V8452 
V8212 0.8210 
0.7933 0.7932 
0.7619 0.7619 
0.727 1 0.7273 

<ii. = 2.00 

V-7547 0.7547 
0.7510 0.7510 
0.7398 0.7398 
0.7283 0.7283 
V7136 07136 
0.6959 V6959 
0.6752 0.6752 
06517 0.6517 
06256 0.6256 
0.5969 0.5969 

1GOOO 
1wOO 
1.0000 
0.9923 
0.9690 
09302 

lJx)OO 
1%3000 
1GOOO 
0.9970 
0.9880 
V9730 
v9510 
0.9240 
0.8900 
0.8510 

1+IOOO 
v9950 
V9820 
0.9680 
0.9500 
0.9280 
0.9020 
0.8720 
0.8380 
0.8000 

O-8230 
0.8190 
0.8080 
0.7960 
0.7820 
V7640 
07220 
0.7170 
0.6890 
0.6580 

first ten terms of (4). The entries in the fourth column 
have been picked up from El]. It is seen that the 
difference between &, and 6(‘“) is everywhere smaller 
than that between BoOios and rY’“). Therefore, the 
present solution f&i may be said to be superior to the 
solution of Goios. 

Variation in the shape of developing temperature 
profile with variation in the value of Bi is shown in 
Fig. 1. The curves have been drawn by computing the 
solution eC2). It is noteworthy that the qualitative 
picture given by Fig. 1 is feasible. 

Mixed-mean temperature is an important quantity 
to be investigated. It can be calculated very easiIy from 
each of (10) and (11) and is, therefore, shown directly 
in Table 2. It is seen that mixed-mean temperature 
decreases as 5 and Bi increase. This shows that the 
present solutions, Otlim and e,,,,, are qualitatively 
satisfactory. It is seen, from the second and fourth 
columns, that the absolute difference Idol, --&‘“‘/ is 
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FIG. 1. Axially varying temperature profiles at various 
values of Bi. 

small and differs insign&antiy from l~~2)m-~$,ro)l for 
Bi f O-1. Tlw difference between 6C2)m and tI,!,!*‘, from 
the third and fourth columns, is very small and de- 
creases as r increases. As is seen that ~Bc2pn-O~o)\ is 
smaller than ~8clr-f&‘0t~, &, is superior to Qt. This 
indicates that, in the case of present problem, Galerkin 
method is convergent. That is, the third order solution 
is expected to be superior to I?,~, and so on. The 
rigorous proof for convergence is not given here, as it 
involves certain abstract concepts of “pure math- 
ematics”. 

The family of functions @_,, intr~u~d by (9), is also 
suitable to cases of Newtonian and non-Newtonian 
fluids and analogous problems offlat conduit geometry. 
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Table 2. Comparison of various mixed-mean temperature solutions at several values of Bi 

We 

0000 
0005 
0010 
0.050 
0100 
0‘200 
0300 
O-400 
0.500 
1QOO 

@oOO 
0005 
0010 
0.050 
0100 
0.200 
0300 
0400 
0500 
1mO 

Q(lM 6 (2)m 
#WI 

nl 6 (lkn 0 (2M fyl0’ m 

Bi = 0.1 Bi = I.0 

09998017 0.9999872 09999998 09868421 0.9989142 09999853 
09988270 0.9989985 @9990054 09790819 09899986 0.9905198 
0.9978532 09980118 09980155 a9713828 0.9812029 0.98 14567 
0.9900969 09901811 a9901793 o-91 19295 O-9158468 0.9156932 
0.9804863 0980523 1 09805225 0.8427036 68433028 0,8432655 
~96~5~ 09615485 0*9615487 07196180 @7184993 0.7185163 
09429677 09429652 O-9429653 @6145039 06133573 0.6133648 
@9247502 0.9247464 09247464 0.5247548 0.5238155 0.5238174 
09068847 09068807 0.9068807 04481089 04473841 04473843 
08226030 0.8225994 08225994 0.2034790 0.2033472 02033470 

Bi = 05 Bi = 2.0 

@9959016 09997032 09999963 09642857 69963370 0.9999416 
09915033 09949786 09951334 O-9519671 ~9803020 09819871 
0.9871244 ~~2989 09903763 09398059 09647802 09654707 
09527821 09542592 09542174 0.8479454 0.8554646 0.8549704 
0.9115295 0.9119817 0~9119685 0.7456414 07446335 0,7445717 
@8343052 0.8341268 0.8341308 0.5765730 0.5726402 0.5726994 
07636234 0.7633584 a7633556 04458395 Od428114 04428281 
06989297 06986719 06986727 0.3447489 0.3427742 03427769 
0.6397168 ~6394886 0.6394888 0.2665797 02653914 0.2653897 
~41~217 ~4108146 04108146 @0736968 00738526 o-0738522 

SUR UNE SOLUTION ANALYTIQUE DU REGIME D’ETABLISSEMENT THERMIQUE 
EN ECOULEMENT RAMPANT DANS UN TUBE CIRCULAIRE AVEC DES CONDITIONS 

AUX LIMITES MIXTBS 

R&urn&-Le prCsent travail traitedu probleme du transfert thermique stationnaire en icoulement rampant 
dans un tube circulaire avec propri&s physiques constantes et conduction thermique axiale negligeable. 

L’tttilisation de la transformation de Laplace par rapport B la coordonnee axiale et dune mtthode de 
Galerkin dans le domaine transform6 permet d’obtenir une solution analytique approchk. Les calculs 
ont montrt que la seconde approximation ainsi obtenue est en bon accord avec la solution analytique 

exacte connue sous forme de developpement en s&e. 
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CJBER EINE GESCHLOSSENE LOSUNG FOR TRERMISCII ENTWICKELTE 
PFROPFENSTR~MUNG IN KREISROH REN BEI GEMISCHTEN RANDBEDINGUNGEN 

Z~~rn~enf~su~-Die vorliegende Arbeit beschlftigt sich mit der Frage des stationaren W~rrne~~r- 
gangs in einer Pfropfenstramung in einem Kreisrohr mit konstanten Stoffeigenschaften und bei 
vernachl&sigbarer axiaier WIrmeleitung. 

Der Gebrauch sowohl der Laplace-Transformation unter Berucksichtigung der axialen Koordinate 
und der Technik von Galerkin im Transformationsbereich ergibt eine analytische Niiherungsliisung. 
Die Berechnungen haben gezeigt, da13 die zweite Naherung, die man auf diese Weise erhdlt, gut 

iiberinstimmt mit der bekannten genauen analytischen Lijsung in der Form einer Reihe. 

AHAJIHTHYECKOE PEIIIEHME B 3AMKHYTOH cPOPME ,QJDI TEIIJIOOBMEHA 
B KPYFJIOH TPYBE CO CTEP31CHEBbIM TEHEHHEM IIPH CMEIIIAHHbIX 

I-PAHHYHbIX YCJIOBHRX 

notary - B pa6oTe pacchrarpwuaezca cTau~oHapnbi~ zennoo6Mea B ~pyro~ot rpy6e co cTepaHe- 

BbiM IIOTOKOM IIpH ~oCTOIHHblX @i3ES'CKUX CBO&TBaX H B ~H~p~eH~H ~MO~~~H~Tb~ 

B&on6 oca. B pesynblare npaMeHeHHa npeo6pa3oeaHHa Jk%WfaCa no IIpOnOJIbHOii KoopAuHaTe H 

HC~O5b30BaHUX MeTOAZi hJXepKiiHa B o6nacTri n306paxeHriti HaftJIeHO npH6nuxeHHoe peIITeHUe 

BaHWlHTHWCKOk@OpMe. ~~C~~TbI~OKa3~~,~TO~ORylreH~OeT~KHMo6pa3oMBTOp~npH6~H~eH~~ 

XOpO"I0 COBtIaAaeT C W3BeCTHbIM TO'iHbIM aHZUIBT&i'RCKHM peIIIeHlieM,BMeK)WWM BZiApRAB. 


